
Classwork 14: Random Walks
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1) (Analytic) Let yt be a random walk so that yt = yt−1 + ut, where ut ~ iid N(0, σ2).

Suppose y1 = u1. Show that yt =
∑

t ut so that y1 = u1, y2 = u1 + u2, and y3 = u1 + u2 + u3. A rigorous
mathematical proof is not necessary; just show it is true for those first few cases.

2) (Analytic) Use the previous result to show why random walks are nonstationary.

3) (Analytic) Suppose xt and yt are two unrelated random walks, so that

xt = xt−1 + wt

yt = yt−1 + vt

If we estimate yt = β0 + β1xt + ut, why do we often conclude that x has a strong association with y?
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4) (R) Granger-Newbold (1974) Replication

Generate two time series xt and yt using accumulate() that are unrelated except that they are both random
walks:

yt = yt−1 + wt

xt = xt−1 + vt

Where wt and vt are both iid N(0, 1) and t goes from 1 to 50.

Run the regression y ~ x. Can you reject the null hypothesis that β1 = 0? That is, does x seem to effect y
(p value less than .05)?

Then make this into a simulation using map(), where you’ll generate 100 datasets, run y ~ x with each, and
count the total number of times β1 = 0 is rejected.

5) (R) Take the simulation above and adjust it to observe what happens when

we increase the number of observations from 50 to 100 to 300. Does a large sample size help to find β1 = 0
more often?

6) (R) We can first difference a random walk to get a stationary time series

of ut. Take your simulation above to estimate a new model: yt − yt−1 = β0 + β1(xt − xt−1) + ut. Does taking
first differences help to find β̂1 = 0 more often?

7) (R) Use accumulate to generate an autocorrelated time series that follows this process:

yt = 0.9yt−1 + ut

where ut is iid N(0, 1).

8) (R) Extra Credit (2 points): Continuing from the previous problem, we

learned that yt = β0 + β1yt−1 + ut generates biased but consistent coefficient estimates when there is no
autocorrelation in ut. Simulate this result with one (geom_density) plot that shows that as the sample
size increases, running lm(y ~ lag(y), data = .) is biased but consistent. Use the same data generating
process as the last problem:

yt = 0.9yt−1 + ut

where ut is iid N(0, 1).
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