
EC 421 Classwork 4: Hypothesis Testing (analytical)

In chapter 2, we determined that (given some assumptions): β̂1 is distributed N(β1,
Var(u)∑
i
(xi−x̄)2 ). Var(u) is

unknown since ui is unobservable, so we have to approximate it using the regression residuals ei. Because of
this, we also use the t-distribution, which is similar to the Normal distribution, but with slightly fatter tails.

We define “standard error” as our estimate of the standard deviation of the regression coefficient. The formula

for a simple regression standard error of β̂1 is
√ ∑

i
(e2

i
)

(n−2)
∑

i
(xi−x̄)2 .

1) We’d like our standard errors to be as small as possible so we can increase the precision of
our estimates. If we increased the number of observations (assuming all else is held equal), will our standard
errors increase or decrease?

2) All else held equal, if the sample variance of xi decreased, should we expect that the standard
errors would increase or decrease?

For the sake of building some intuition, an example of this:

Take 2 studies designed to find the effect of a blood pressure medication on health.

Study A: 9 people take the placebo; 1 person takes the medication, so X = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

Study B: 5 people take the placebo; 5 people take the medication so X = (0, 0, 0, 0, 0, 1, 1, 1, 1, 1).

Calculate the sample variance of X in both of these studies (sample variance =
∑

i
(xi−x̄)2

n−1 . Which study will
yield a more confident estimate of the effect, and which study has a lower Var(X)?

3) Finally, if we decreased the variance of ui by including more explanatory variables (if we
used the second model instead of the first model below), should we expect that the standard error on β1 will
increase or decrease?

wagei = β0 + β1educationi + ui

wagei = β0 + β1educationi + β2sexi + β3racei + β4family wealthi + ui

Hypothesis Testing

Suppose we fit the model yi = β0 + β1xi + ui by running this:
# lm(y ~ x, data) %>%
# broom::tidy(conf.int = TRUE)

And suppose we got these results:

term estimate std.error statistic p.value conf.low conf.high
(Intercept) 1.41 0.924 1.53 0.145 -0.53 3.35
x 0.930 0.302 3.08 0.00646 0.296 1.56

In this question, we’ll practice doing hypothesis tests on OLS estimates. First, I’ll do the hypothesis test on
the estimate for the intercept, β̂0, and then you’ll do the hypothesis test on the estimate for the slope, β̂1.
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Hypothesis Test for β̂0 Our estimate for β0 is 1.41, and our standard error is 0.924.

Formally, we’d like to test the null hypothesis: H0: β0 = 0 Against the alternative: Ha: β0 6= 0

Here are 3 equivalent ways to do hypothesis testing:

1) Compare the test statistic to the critical values. If the test statistic is more extreme than the critical
values, you have evidence in favor of rejecting the null.

2) Calculate a confidence interval around the estimate. If 0 lies inside of that confidence interval, you’ll
fail to reject the null.

3) Calculate the p-value for the estimate. If the p-value is less than .05, you have evidence in favor of
rejecting the null at the 5% level.

Test Statistic and Critical Value The test statistic is the number of standard deviations from 0 the
estimate falls. It’s calculated by:

abs(estimate/standard error)
abs(1.41/0.924)

## [1] 1.525974

The critical value for a 2-tailed 95% test is t.05/2,df=n−k−1. Suppose n is 20 and k is 1 (k is the number of
explanatory variables, which is 1 here). Then we’d use t.05/2,df=18 = 2.100922. You could look in the back
of a statistics textbook to find that number, but in this class, I want you to find it using R with the dt()
family. Read the help docs to find out how:
?dt

dt(x, df) gives you the density (the pdf) of the t distribution. So one way to plot the t distribution would
be to use dt() like this:
library(tidyverse)

tibble(
x = seq(-5, 5, by = .01),
y = dt(x, df = 18)

) %>%
qplot(data = ., x = x, y = y, geom = "line")
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pt(q, df) takes a q quantile and gives you the distribution function. For example, since the t distribution is
centered on 0, pt(0) will return .5 because half of the distribution is to the left of 0.
pt(0, df = 18)

## [1] 0.5

qt(p, df) does the inverse of pt(): it takes a p probability and gives you the quantile function. For example,
qt(.5) returns 0 because half of the distribution is to the left of 0.
qt(.5, df = 18)

## [1] 0

Finally, rt(n, df) generates n random numbers from the t distribution. Here I generate 5 random numbers
from the t distribution (with 18 degrees of freedom):
rt(5, df = 18)

## [1] 0.7482643 1.8298626 -1.1976996 0.7001277 -0.8331140

The interpretation of the critical value of 2.1 is that 95% of the density of the t-distribution with 18 degrees
of freedom falls between -2.1 and 2.1.

Next, we’ll compare the test statistic to the critical values: 1.53 is not outside of the interval -2.100922 and
2.100922, so we fail to reject the null, and β0 may very well be equal to 0.

Confidence Interval The 95% confidence interval is +/- about 2 standard deviations from the estimate:
95/100 times we sample the population and estimate β0, this confidence interval will hold the true value of
β0 (as long as all our other OLS assumptions hold, of course).

[estimate - (critical value x standard error); estimate + (critical value x standard error)]
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1.41 - 2.100922*0.924 = -0.53

1.41 + 2.100922*0.924 = 3.35

Since the 95% confidence interval overlaps 0, that tells you (again) that you can’t reject the null that β0 = 0
at the 5% level.

P-value P-value: given sampling uncertainty, this is the probability of getting a test statistic as extreme as
this under the null.

Again we’ll use the dt() family: in particular, we can use pt(). We multiply by 2 to get the probability
of getting a test statistic greater than 1.53 or less than -1.53. The chance of getting that extreme of a test
statistic is 14.3%. If the p-value was less than 10%, we could reject the null at the 10% level. If the p-value
was less than 5%, we could reject the null at the 5% level.
2 * (1 - pt(1.53, df = 18))

## [1] 0.1434013

In future projects, I’ll often say something like: “Estimate this model and perform appropriate hypothesis
tests.” That just means run lm() and report the hypothesis test results for each parameter. In this case, you
could simply say:

I fail to reject the null that β0 = 0 at the 10% level.

4) Your turn! Perform a formal hypothesis test on β̂1 assuming n = 20, using the OLS results from
the table above. Make sure to state the null and alternative hypotheses, show how the test statistic was
calculated, compare the test statistic to the critical values, show how the confidence interval was calculated,
and interpret the p-value.

4


	Hypothesis Testing

