Classwork 8: Midterm Review

Consider the new linear model $y_i = \beta_1 x_i + u_i$. In this model, the intercept is omitted (thus forced to be 0). In this classwork, we'll build the econometrics of this model from scratch.

- 1. Recall that OLS minimizes the sum of squared residuals. Write down what that means in this context and take first order conditions. Show that $\hat{\beta}_1 = \frac{\sum_i x_i y_i}{\sum_i x_i^2}$. (2 points)
- 2. Next, show that as long as the model is correctly specified (assume it reflects the true data generating process), we'll have that $\hat{\beta}_1 = \beta_1 + \frac{\sum_i x_i u_i}{\sum_i x_i^2}$. (2 points)
- 3. Let $w_i = \frac{x_i}{\sum_i x_i^2}$ and show that $\hat{\beta}_1$ is an unbiased estimator of β_1 under the key assumption of exogeneity. (1 point)
- 4. Consider this dataset. Sketch the data points and a line of best fit (with the intercept forced to be 0). Fill out the table for the model with the omitted intercept $y_i = \beta_1 x_i + u_i$. Note that when an intercept β_0 is not included in the model, the parameters which minimize the sum of the squared residuals may not generate residuals that sum to zero. (2 points)

\boldsymbol{x}	y	\hat{y}	e
1	3		
2	3		
3	3		
4	4		
5	2		

- 5. For this model, the standard error for $\hat{\beta}_1$ can be shown to be $\sqrt{\frac{\sum_i e_i^2}{(n-1)\sum_i x_i^2}}$. Calculate this standard error using the data from the previous question. (1 point)
- 6. Continuing from the previous question, conduct a formal hypothesis test at the .05 significance level for $\hat{\beta}_1$. Hint: the degrees of freedom in the general case for a linear regression model are n-k where k is the number of model parameters, which is 1 here because there's only one β to estimate. You should show your work, but you can also check it using functions in R. (2 points)
 - Null hypothesis:
 - Alternative hypothesis:
 - Confidence interval:
 - T-statistic and critical value:
 - P-value: _____

 - Interpretation: do X and Y really seem to be related, or is it just as likely that the correlation between the two comes from sampling error?

Here is some potentially useful information:

$$pt(3.45, df = 4) is 0.987$$

 $qt(.025, df = 4) is -2.78$