
Classwork 7: Hypothesis Testing (Part 2)

In chapter 6 of the workbook, we determined that (given some assumptions): β̂1 is distributed
N(β1,

σ2
u∑

i
(xi−x̄)2 ). So the variance of β̂1 is σ2

u∑
i
(xi−x̄)2 .

Let the mean squared deviance of X be: MSD(x) = 1
n

∑
i(xi − x̄)2. This is very much related to the estimate

of the variance of X (σ̂2
X = 1

n−1
∑

i(xi − x̄)2). Then another formula for the variance of β̂1 is:

σ2
u

nMSD(x)

1) When we fit a model, we should prefer more precise estimates of model parameters. That
is, if we can easily take steps to decrease the variance of β̂1, we should take those steps because then we
would get a more precise estimate of the relationship between X and Y . Would we be more certain about
our estimate of β1 if we increased the sample size n? Why/why not? Draw a picture to demonstrate this
idea. (Hint: reference the formula Var(β̂1) = σ2

u

nMSD(x) )

2) Would we be more certain about our estimate of β1 if the explanatory variable X was more
spread out, and why/why not? Draw a picture to demonstrate this idea.

3) Would we be more certain about our estimate of β1 if the unobservable variable U was more
spread out, and why/why not? Draw a picture to demonstrate this idea.

For the next few questions, consider this dataset and model:
library(tidyverse)

sample_data <- tibble(
x = 1:10,
y = c(-8, 0, -8, -1, 4, 3, 1, 8, 8, 6)
)

sample_data %>%
lm(y ~ x, data = .)

##
## Call:
## lm(formula = y ~ x, data = .)
##
## Coefficients:
## (Intercept) x
## -7.600 1.618

Recall that the simple linear regression estimate β̂1 is equal to the covariance of x and y divided by the
variance. Here I use dplyr verbs to get that value:
sample_data %>%

summarize(cov = cov(x, y), var = var(x)) %>%
mutate(b1 = cov / var)
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## # A tibble: 1 x 3
## cov var b1
## <dbl> <dbl> <dbl>
## 1 14.8 9.17 1.62

You can also use dplyr verbs to find the standard error for β̂1 like this:
sample_data %>%

mutate(e = residuals(lm(y ~ x, data = sample_data))) %>%
summarize(se = sqrt(var(e) / (8 * var(x))))

## # A tibble: 1 x 1
## se
## <dbl>
## 1 0.361

4) Your task is to explain where the numbers come from in the result below, especially

the statistic = 4.48, the p.value = .00205, the conf.low = .785, and the conf.high = 2.45. Some hints: the null
hypothesis for regression parameters is always β1 = 0, or that x does not actually effect y and the observed
correlation between the two variables can be chalked up to sampling error. Use the alternative hypothesis
β1 ̸= 0. Another hint: the degrees of freedom here is n − 2 = 8 because we lose a degree of freedom when we
use residuals e as an estimate for u and we lose another degree of freedom when we use the sample variance
of e as an estimate for the population variance of e.
sample_data %>%

lm(y ~ x, data = .) %>%
broom::tidy(conf.int = T)

## # A tibble: 2 x 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) -7.6 2.24 -3.39 0.00948 -12.8 -2.43
## 2 x 1.62 0.361 4.48 0.00205 0.785 2.45

5) Should we reject the null hypothesis in the example above for β̂1 at the .05 significance level,
or fail to reject it?
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