Classwork 7: Hypothesis Testing (Part 2)

In chapter 6 of the workbook, we determined that (given some assumptions): $\hat{\beta}_1$ is distributed $N(\beta_1, \frac{\sigma_u^2}{\sum_i (x_i - \bar{x})^2})$. So the variance of $\hat{\beta}_1$ is $\frac{\sigma_u^2}{\sum_i (x_i - \bar{x})^2}$.

Let the mean squared deviance of X be: $MSD(x) = \frac{1}{n} \sum_{i} (x_i - \bar{x})^2$. This is very much related to the estimate of the variance of X $(\hat{\sigma}_X^2 = \frac{1}{n-1} \sum_i (x_i - \bar{x})^2)$. Then another formula for the variance of $\hat{\beta}_1$ is:

$$
\frac{\sigma_u^2}{n\mathrm{MSD}(x)}
$$

1) When we fit a model, we should prefer more precise estimates of model parameters. That is, if we can easily take steps to decrease the variance of $\hat{\beta}_1$, we should take those steps because then we would get a more precise estimate of the relationship between *X* and *Y* . Would we be more certain about our estimate of *β*¹ if we increased the sample size *n*? Why/why not? Draw a picture to demonstrate this idea. (Hint: reference the formula $\text{Var}(\hat{\beta}_1) = \frac{\sigma_u^2}{n\text{MSD}(x)}$)

2) Would we be more certain about our estimate of *β*¹ **if the explanatory variable** *X* **was more spread out, and why/why not? Draw a picture to demonstrate this idea.**

3) Would we be more certain about our estimate of *β*¹ **if the unobservable variable** *U* **was more spread out, and why/why not? Draw a picture to demonstrate this idea.**

For the next few questions, consider this dataset and model:

```
sample_data <- tibble(
 x = 1:10,
 y = c(-8, 0, -8, -1, 4, 3, 1, 8, 8, 6))
sample_data %>%
 lm(y ~ x, data = .)
##
## Call:
## lm(formula = y \sim x, data = .)##
## Coefficients:
## (Intercept) x
## -7.600 1.618
```
library(tidyverse)

Recall that the simple linear regression estimate $\hat{\beta}_1$ is equal to the covariance of x and y divided by the variance. Here I use dplyr verbs to get that value:

sample_data **%>%** $summarize(cov = cov(x, y), var = var(x))$ %>% $mutate(b1 = cov / var)$

```
## # A tibble: 1 x 3
## cov var b1
## <dbl> <dbl> <dbl>
## 1 14.8 9.17 1.62
```
You can also use dplyr verbs to find the standard error for $\hat{\beta}_1$ like this:

```
sample_data %>%
  mutate(e = residuals(lm(y ~ x, data = sample_data))) %>%
  summarize(se = sqrt(var(e) / (8 * var(x))))
## # A tibble: 1 x 1
```
se ## <dbl> ## 1 0.361

4) Your task is to explain where the numbers come from in the result below, especially

the statistic $= 4.48$, the p.value $= .00205$, the conf.low $= .785$, and the conf.high $= 2.45$. Some hints: the null hypothesis for regression parameters is always $\beta_1 = 0$, or that x does not actually effect y and the observed correlation between the two variables can be chalked up to sampling error. Use the alternative hypothesis $\beta_1 \neq 0$. Another hint: the degrees of freedom here is $n-2=8$ because we lose a degree of freedom when we use residuals e as an estimate for u and we lose another degree of freedom when we use the sample variance of e as an estimate for the population variance of e.

```
sample_data %>%
 lm(y ~ x, data = .) %>%
 broom::tidy(conf.int = T)
## # A tibble: 2 x 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) -7.6 2.24 -3.39 0.00948 -12.8 -2.43
## 2 x 1.62 0.361 4.48 0.00205 0.785 2.45
```
 ${\bf 5)}$ Should we reject the null hypothesis in the example above for $\hat \beta_1$ at the ${\bf .05}$ significance level, **or fail to reject it?**