
Classwork 5: Model Assumptions
1. In classwork 4, we showed that β̂1 =

∑
i(xi−x̄)yi∑
i(xi−x̄)2

. Now, show that β̂1 = β1 +
∑

i(xi−x̄)ui∑
i(xi−x̄)2

. (Why am I asking
you this? You’ll see in the workbook chapter 6.) (4 points)

Hint: note that the left hand side is the estimate for β1 and the right hand side includes the true value
of β1. These will not be exactly equivalent except by chance. You should start this problem by making a
substitution for yi, since yi = β0 + β1xi + ui. This will get the true β1 and ui into the equation.

2. Models are really just sets of assumptions. Some of those assumptions are plausible, and others can be
a little far-fetched. In this problem, we’ll think about the six assumptions that comprise the OLS linear
model.

(a) We assume the model is correctly specified and linear in parameters. The models we can
fit using OLS must be linear in parameters β, but don’t have to be linear in variables x or y. For
instance, we can fit this model: log(yi) = β0 + β1x

2
i + ui but not this model: yi = β0 + β1β2xi + ui.

To see why the second model would create issues, suppose we tried to fit it and got that β̂0 = 5 and
β̂1β̂2 = 3. Would it be possible to separately identify β̂1 from β̂2? Explain why or why not. (1 point)

(b) We assume there is some variation in x. That is, var(x) can’t be zero. Draw a scatterplot of
some data where there is variation in y but no variation in x. Sketch a line of best fit and explain
why it’s important for there to be variation in x in order to get estimates for β0 and β1. (1 point)

I’ll talk about the third assumption in chapter 6 of the workbook, so for now I’ll just present it without a
detailed explanation.

(c) We assume exogeneity: the conditional expectation of u given X is zero: E[ui|X] = 0.

The last three assumptions are not required for us to prove that OLS β̂0 or β̂1 are unbiased estimators for
the parameters of the true model. These assumptions are required to use OLS standard errors with no
adjustments. You’ll study all of these in some depth when you take EC421, so I’ll just present these here
and leave it at that.

(d) We assume u is homoskedastic.

(e) We assume ui and uj are independent for all i ̸= j.

(f) We assume ui has a normal distribution for all observations i.

3. Practice finding a regression’s R2: Open a new R script, make the first line library(tidyverse), and
make the second line this in order to read in the students dataset:

students <- read_csv("https://raw.githubusercontent.com/cobriant/students_dataset/main/students.csv")

Include a compiled R script that answers these questions:
3a) Is this data cross-sectional, time series, or panel data? (1 point)
3b) Fit the model final_gradei = β0 + β1failuresi + ui. Interpret the estimates for β0 and β1. (1 point)
3c) Pipe the lm object into the function summary() to read the regression R2. It can be found in the second

to last line under "Multiple R-squared". Interpret this number. (1 point)
3d) Fit some more models: instead of using failures as the explanatory variable, use absences or grade1

or grade2. Which of these models yields the highest R-squared? Which yields the lowest R-squared? Does it
make sense about why this would be the case when we think of higher R-squared indicating a stronger ability
to predict the outcome final_grade? (1 point)


