Classwork 3: OLS Numerical Example

Suppose we sampled random variables X and Y to get this data:

Х	Υ
1	4
2	2
3	1

- 1. Draw a plot of x_i and y_i and eyeball a line of best fit. What is the slope and intercept of that line (approximately)? (1 point)
- 2. Use the formulas we derived in Chapter 3 to find the slope and intercept of the OLS line of best fit: $y_i = \beta_0 + \beta_1 x_i + u_i$. Here are the formulas you can use: $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$ and $\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i y_i) - \bar{x} \bar{y} n}{\sum_{i=1}^n (x_i^2) - \bar{x}^2 n}$. Verify that your estimates for β_0 and β_1 are on track by comparing these answers to your answers to question 1. (1 point)
- 3. Fill out the table below to calculate the OLS fitted values $(\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i)$ and residuals $(e_i = y_i \hat{y}_i)$. Verify that the fitted values you calculate are correct by making sure that (x_i, \hat{y}_i) lays on the line of best fit you drew in question 1. (2 points)

- 4. Two things are always true about OLS residuals e_i : First, $\sum_{i=1}^{n} e_i = 0$ and second, $\sum_{i=1}^{n} x_i e_i = 0$. Verify both these things are true in this numerical example. (2 points)
- 5. Write a proof that shows since $\sum_{i=1}^{n} e_i = 0$ and $\sum_{i=1}^{n} x_i e_i = 0$, the covariance of x and e will always be 0. Recall the formula for the estimate of the covariance between two random variables given sample data: $\frac{1}{n-1} \sum_i (x_i \bar{x})(e_i \bar{e})$. (2 points)
- 6. Going back to the numerical example, suppose that the true relationship between X and Y is actually this: $y_i = 5 x_i + u_i$. So the true values for $\beta_0 = 5$ and $\beta_1 = -1$. Calculate the true disturbance u_i . Is it required that $\sum_{i=1}^{n} u_i = 0$ or $\sum_{i=1}^{n} x_i u_i = 0$ like it is with e_i ? (2 points)

х	У	u_i
1	4	
2	2	
3	1	