Classwork 16: Omitted Variable Bias (part 1: analytical)

1. Show that $\hat{\beta}_{1}$ is an unbiased estimator of β_{1} when the model is correctly specified as $y_{i}=\beta_{0}+\beta_{1} x_{i}+u_{i}$ and exogeneity holds.
You can start with the formula $\hat{\beta}_{1}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}$. I think a good first step is to substitute in for y_{i} and \bar{y}.

2. Signing the Bias (omitted variable bias)

2a) Suppose the true data generating process for \mathbf{y} is $y=\beta_{0}+\beta_{1} x+\beta_{2} z+u$ but we omit z by estimating the incorrect model $y=\beta_{0}+\beta_{1} x+u$. Show that $\hat{\beta}_{1}=\beta_{1}+\beta_{2} \frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(z_{i}-\bar{z}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}+\frac{\sum_{i}\left(x_{i}-\bar{x}\right) u_{i}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}$. You can start with a similar procedure as question 1: take $\hat{\beta}_{1}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}$ and plug in true formulas for y and \bar{y}.
$2 b)$ The first term is the true value β_{1}. The third term is the sampling error, which is 0 in expectation if exogeneity holds with respect to x and u. The second term $\beta_{2} \frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(z_{i}-\bar{z}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}$ is the omitted variable bias. Fill in the blanks:
β_{2} is the true effect of z on \qquad
$\sum_{i}\left(x_{i}-\bar{x}\right)\left(z_{i}-\bar{z}\right)$ is $(n-1)$ \qquad
$\sum_{i}\left(x_{i}-\bar{x}\right)^{2}$ is $(n-1)$ \qquad

2c) In the workbook chapter 15, you learned that if an omitted variable affects both x and y, it causes omitted variable bias and confounds the relationship you're trying to measure between x and y .
Considering the OVB term in 2 b , what would the OVB be if z did not affect x ? What about if z did not affect y? Explain.

2d) We can also use the OVB term in 2 b to sign the bias. That is, we can predict whether $\hat{\beta}_{1}$ will be greater than or less than the true β_{1} in the presence of bias from some omitted variable.
If z positively affects y and z positively affects x, will the OVB bias term be positive or negative? Will $\hat{\beta}_{1}$ be greater than or less than the true β_{1} ?

2e) If z negatively affects y and z negatively affects x, will the OVB bias term be positive or negative? Will $\hat{\beta}_{1}$ be greater than or less than the true β_{1} ?
2f) If z positively affects y but z negatively affects x, will the OVB bias term be positive or negative? Will $\hat{\beta}_{1}$ be greater than or less than the true β_{1} ?
3) Consider the model Earnings ${ }_{i}=\beta_{0}+\beta_{1}$ Years of Education ${ }_{i}+u_{i}$. Answer the questions below.
3a) When we have to omit ability from this model, does it make it look like education is a better or worse investment than it actually is? Explain.
3b) When we have to omit conscientiousness from this model, does it make it look like education is a better or worse investment than it actually is? Explain.

3c) When we have to omit conformity from this model, does it make it look like education is a better or worse investment than it actually is? Explain.
4) Consider the model High School GPA G $_{i}=\beta_{0}+\beta_{1}$ Number of Opposite Sex Friends ${ }_{i}+$ u_{i}.
When we have to omit Strict Parents from this model, does it make it look like having friends of the opposite sex is better or worse for your GPA than it actually is? Explain.

