Classwork 12: Log-linear and Log-log Models

Some hints for this assignment:
Log rules:
Definition: If $\log (a)=b$, then $e^{b}=a$.
$\log (a b)=\log (a)+\log (b)$
$\log \left(\frac{a}{b}\right)=\log (a)-\log (b)$
$\log \left(a^{b}\right)=b \log (a)$
In R, you can calculate (natural) logs using $\log ()$.
You can calculate e^{a} using $\exp (\mathrm{a})$.

Part 1: Log-linear Models

A log-linear model has $\log (y)$ on the left and linear terms on the right: $\log \left(y_{i}\right)=\beta_{0}+\beta_{1} x_{i}+u_{i}$
What kind of process yields this kind of relationship? Consider the formula for exponential growth or decay:

$$
\begin{equation*}
y=(\text { initial amount }) e^{r t} \tag{1}
\end{equation*}
$$

1) Take equation (1) and take the \log of both sides. Show that $\log (y)=\log ($ initial amount $)+r t$
2) Next let $\beta_{0}=\log ($ initialamount $)$, let $\beta_{1}=r$, and let $x=t$. The model should now look almost just like the log-linear regression model.
3) The only missing piece is u. How would you need to introduce u into equation (1) to get it to be additive in the log-linear model, so it matches that model exactly?
4) What is the interpretation for β_{0} in a log-linear model? That is, if we estimated $\log (y)=$ $5+0.1 x+u$, how would you interpret the 5 ?

When $\mathrm{x}=0$, we'd expect y to be \qquad .
5) What is the interpretation for β_{1} in a log-linear model? If we estimated $\log (y)=5+0.1 x+u$, how would you interpret the 0.1 ?
When x increases by 1 , we'd expect y to increase by \qquad -

Hint: to solve this question, start with the fact that you know $\log (y)$ increases by 0.1 , so if y goes from y_{1} to y_{2}, then $\log \left(y_{2}\right)-\log \left(y_{1}\right)=0.1$, so $\log \left(\frac{y_{2}}{y_{1}}\right)=0.1$. Your final answer should look like this: $y_{2}-y_{1}=a y_{1}$ for some number a. $a \times 100$ is the percent by which y is expected to increase given a one-unit increase in x.

It turns out that there's a simple trick for interpreting β_{1} : since $r=\beta_{1}$, the interpretation of β_{1} is the same as the interpretation for r : when t increases by $1, y$ increases by $100 * \mathrm{r} \%$. That's not exactly correct, but it's a close approximation.
Here I'll simulate some data that comes from an exponential growth process, I'll visualize it, I'll visualize it with a \log transformation on y, and I'll fit a log-linear model to it.
library(tidyverse)

```
exponential_growth_data <- tibble(
```

```
    x = 1:100,
    y = exp(.1 * x + rnorm(n = 100, sd = 1))
exponential_growth_data %>%
    ggplot(aes(x = x, y = y)) +
    geom_point() +
    geom_smooth(se = FALSE)
```



```
exponential_growth_data %>%
    ggplot(aes(x = x, y = y)) +
    geom_point() +
    geom_smooth(se = FALSE, method = lm) +
    scale_y_log10()
```


exponential_growth_data \%>\%
$\operatorname{lm}(\log (y) \sim x, d a t a=) \%>.\%$
broom: :tidy()

```
## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0.222 0.225 0.984 3.27e- 1
## 2 x 0.0993 0.00387 25.7 2.72e-45
```


Part 2: Log-log

A log-log model has logged terms both on the left and right hand sides: $\log \left(y_{i}\right)=\beta_{0}+\beta_{1} \log \left(x_{i}\right)+u_{i}$.
What kind of process yields this kind of relationship? Consider a constant elasticity demand curve, where the elasticity ε is the percent change in Q_{d} corresponding to a 1 percent change in price:

$$
\begin{equation*}
Q_{d}=\beta_{0} P^{\beta_{1}} \tag{2}
\end{equation*}
$$

6) Which parameter represents the elasticity ε ? Fill in the blanks in the proof below:

$$
\left.\left.\begin{array}{rl}
\varepsilon & =\frac{\% \Delta Q_{d}}{\% \Delta P} \\
& =\frac{\frac{\partial Q}{Q}}{\frac{\partial P}{P}} \\
& =\frac{\partial Q}{\partial P} \frac{P}{Q} \\
& =\frac{\partial\left(\beta_{0} P^{\beta_{1}}\right)}{\partial P} \frac{P}{Q} \\
& =(\\
& =(
\end{array}\right) \frac{P}{Q} \quad \frac{P}{(}\right)
$$

7) Take logs of both sides of equation (2) and change Q to y and P to x to see that we (almost) have the log-log regression model.
8) The only missing piece is u. How would you need to introduce u into equation (2) to get it to be additive in the log-log model, so it matches that model exactly?
β_{1} has the same interpretation as an elasticity: it's the expected percent change in y corresponding to a 1 percent change in x. So if we estimate the model and get:

$$
\log (y)=.25+.72 \log (x)
$$

We'd say that a 1 percent increase in x is associated with a .72 percent increase in y . Notice for log-linear, we multiply by 100 , but for $\log -\log$, we do not.

