
Classwork 12: Log-linear and Log-log Models

Some hints for this assignment:

Log rules:
Definition: If log(a) = b, then eb = a.
log(ab) = log(a) + log(b)
log( a

b ) = log(a) − log(b)
log(ab) = b log(a)

In R, you can calculate (natural) logs using log().
You can calculate ea using exp(a).

Part 1: Log-linear Models
A log-linear model has log(y) on the left and linear terms on the right: log(yi) = β0 + β1xi + ui

What kind of process yields this kind of relationship? Consider the formula for exponential growth or decay:

y = (initial amount) ert (1)

1) Take equation (1) and take the log of both sides. Show that log(y) = log(initial amount) + rt

2) Next let β0 = log(initialamount), let β1 = r, and let x = t. The model should now look almost
just like the log-linear regression model.

3) The only missing piece is u. How would you need to introduce u into equation (1) to get it
to be additive in the log-linear model, so it matches that model exactly?

4) What is the interpretation for β0 in a log-linear model? That is, if we estimated log(y) =
5 + 0.1x + u, how would you interpret the 5?

When x = 0, we’d expect y to be __.

5) What is the interpretation for β1 in a log-linear model? If we estimated log(y) = 5 + 0.1x + u,
how would you interpret the 0.1?

When x increases by 1, we’d expect y to increase by __.

Hint: to solve this question, start with the fact that you know log(y) increases by 0.1, so if y goes from y1 to
y2, then log(y2) − log(y1) = 0.1, so log( y2

y1
) = 0.1. Your final answer should look like this: y2 − y1 = ay1 for

some number a. a × 100 is the percent by which y is expected to increase given a one-unit increase in x.

It turns out that there’s a simple trick for interpreting β1: since r = β1, the interpretation of β1 is the same
as the interpretation for r: when t increases by 1, y increases by 100 * r %. That’s not exactly correct, but
it’s a close approximation.

Here I’ll simulate some data that comes from an exponential growth process, I’ll visualize it, I’ll visualize it
with a log transformation on y, and I’ll fit a log-linear model to it.
library(tidyverse)

exponential_growth_data <- tibble(
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x = 1:100,
y = exp(.1 * x + rnorm(n = 100, sd = 1))
)

exponential_growth_data %>%
ggplot(aes(x = x, y = y)) +
geom_point() +
geom_smooth(se = FALSE)
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exponential_growth_data %>%
ggplot(aes(x = x, y = y)) +
geom_point() +
geom_smooth(se = FALSE, method = lm) +
scale_y_log10()
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exponential_growth_data %>%
lm(log(y) ~ x, data = .) %>%
broom::tidy()
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## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0.222 0.225 0.984 3.27e- 1
## 2 x 0.0993 0.00387 25.7 2.72e-45

Part 2: Log-log
A log-log model has logged terms both on the left and right hand sides: log(yi) = β0 + β1log(xi) + ui.

What kind of process yields this kind of relationship? Consider a constant elasticity demand curve, where the
elasticity ε is the percent change in Qd corresponding to a 1 percent change in price:

Qd = β0P β1 (2)

6) Which parameter represents the elasticity ε? Fill in the blanks in the proof below:

ε = %∆Qd

%∆P

=
∂Q
Q

∂P
P

= ∂Q

∂P

P

Q

= ∂(β0P β1)
∂P

P

Q

= ( ) P

Q

= ( ) P

( )
= β1

7) Take logs of both sides of equation (2) and change Q to y and P to x to see that we (almost)
have the log-log regression model.

8) The only missing piece is u. How would you need to introduce u into equation (2) to get it
to be additive in the log-log model, so it matches that model exactly?

β1 has the same interpretation as an elasticity: it’s the expected percent change in y corresponding to a 1
percent change in x. So if we estimate the model and get:

log(y) = .25 + .72log(x)

We’d say that a 1 percent increase in x is associated with a .72 percent increase in y. Notice for log-linear, we
multiply by 100, but for log-log, we do not.
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