Classwork 12: Log-linear and Log-log Models

Some hints for this assignment:

Log rules: Definition: If $\log(a) = b$, then $e^b = a$. $\log(ab) = \log(a) + \log(b)$ $\log(\frac{a}{b}) = \log(a) - \log(b)$ $\log(a^b) = b \log(a)$

In R, you can calculate (natural) logs using log(). You can calculate e^a using exp(a).

Part 1: Log-linear Models

A log-linear model has log(y) on the left and linear terms on the right: $log(y_i) = \beta_0 + \beta_1 x_i + u_i$

What kind of process yields this kind of relationship? Consider the formula for exponential growth or decay:

$$y = (initial \ amount) \ e^{rt} \tag{1}$$

1) Take equation (1) and take the log of both sides. Show that log(y) = log(initial amount) + rt

2) Next let $\beta_0 = log(initialamount)$, let $\beta_1 = r$, and let x = t. The model should now look almost just like the log-linear regression model.

3) The only missing piece is u. How would you need to introduce u into equation (1) to get it to be additive in the log-linear model, so it matches that model exactly?

4) What is the interpretation for β_0 in a log-linear model? That is, if we estimated log(y) = 5 + 0.1x + u, how would you interpret the 5?

When x = 0, we'd expect y to be ____.

5) What is the interpretation for β_1 in a log-linear model? If we estimated log(y) = 5 + 0.1x + u, how would you interpret the 0.1?

When x increases by 1, we'd expect y to increase by ____.

Hint: to solve this question, start with the fact that you know $\log(y)$ increases by 0.1, so if y goes from y_1 to y_2 , then $\log(y_2) - \log(y_1) = 0.1$, so $\log(\frac{y_2}{y_1}) = 0.1$. Your final answer should look like this: $y_2 - y_1 = ay_1$ for some number a. $a \times 100$ is the percent by which y is expected to increase given a one-unit increase in x.

It turns out that there's a simple trick for interpreting β_1 : since $r = \beta_1$, the interpretation of β_1 is the same as the interpretation for r: when t increases by 1, y increases by 100 * r %. That's not exactly correct, but it's a close approximation.

Here I'll simulate some data that comes from an exponential growth process, I'll visualize it, I'll visualize it with a log transformation on y, and I'll fit a log-linear model to it.

library(tidyverse)

exponential_growth_data <- tibble(</pre>

```
x = 1:100,
y = exp(.1 * x + rnorm(n = 100, sd = 1))
)
exponential_growth_data %>%
```

```
ggplot(aes(x = x, y = y)) +
geom_point() +
geom_smooth(se = FALSE)
```



```
exponential_growth_data %>%
ggplot(aes(x = x, y = y)) +
geom_point() +
geom_smooth(se = FALSE, method = lm) +
scale_y_log10()
```


##	#	A tibble: 2	x 5			
##		term	estimate	<pre>std.error</pre>	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	0.222	0.225	0.984	3.27e- 1
##	2	x	0.0993	0.00387	25.7	2.72e-45

Part 2: Log-log

A log-log model has logged terms both on the left and right hand sides: $log(y_i) = \beta_0 + \beta_1 log(x_i) + u_i$.

What kind of process yields this kind of relationship? Consider a constant elasticity demand curve, where the elasticity ε is the percent change in Q_d corresponding to a 1 percent change in price:

$$Q_d = \beta_0 P^{\beta_1} \tag{2}$$

6) Which parameter represents the elasticity ε ? Fill in the blanks in the proof below:

$$\varepsilon = \frac{\% \Delta Q_d}{\% \Delta P}$$

$$= \frac{\frac{\partial Q}{Q}}{\frac{\partial P}{P}}$$

$$= \frac{\partial Q}{\partial P} \frac{P}{Q}$$

$$= \frac{\partial (\beta_0 P^{\beta_1})}{\partial P} \frac{P}{Q}$$

$$= () \frac{P}{Q}$$

$$= () \frac{P}{()}$$

7) Take logs of both sides of equation (2) and change Q to y and P to x to see that we (almost) have the log-log regression model.

8) The only missing piece is u. How would you need to introduce u into equation (2) to get it to be additive in the log-log model, so it matches that model exactly?

 β_1 has the same interpretation as an elasticity: it's the expected percent change in y corresponding to a 1 percent change in x. So if we estimate the model and get:

$$log(y) = .25 + .72log(x)$$

We'd say that a 1 percent increase in x is associated with a .72 percent increase in y. Notice for log-linear, we multiply by 100, but for log-log, we do not.