Classwork 12: Log-linear and Log-log Models

Some hints for this assignment:

Log rules:

Definition: If log(a) = b, then e’ = a.
log(ab) = log(a) + log(b)

log($) = log(a) — log(b)

log(a®) = blog(a)

In R, you can calculate (natural) logs using log().
You can calculate e* using exp(a).

Part 1: Log-linear Models
A log-linear model has log(y) on the left and linear terms on the right: log(y;) = 8o + B12; + u;

What kind of process yields this kind of relationship? Consider the formula for exponential growth or decay:

y = (initial amount) e"* (1)

1) Take equation (1) and take the log of both sides. Show that log(y) = log(initial amount) + rt

2) Next let 8y = log(initialamount), let §; = r, and let x = t. The model should now look almost
just like the log-linear regression model.

3) The only missing piece is u. How would you need to introduce u into equation (1) to get it
to be additive in the log-linear model, so it matches that model exactly?

4) What is the interpretation for §; in a log-linear model? That is, if we estimated log(y) =
54+ 0.1z + u, how would you interpret the 57

When x = 0, we’d expect y to be ___.

5) What is the interpretation for §; in a log-linear model? If we estimated log(y) =5+ 0.1z + u,
how would you interpret the 0.17

When x increases by 1, we’d expect y to increase by .

Hint: to solve this question, start with the fact that you know log(y) increases by 0.1, so if y goes from y; to
Y2, then log(y2) — log(y1) = 0.1, so log(Z—f) = 0.1. Your final answer should look like this: y2 —y; = ay; for
some number a. a x 100 is the percent by which y is expected to increase given a one-unit increase in z.

It turns out that there’s a simple trick for interpreting (;: since r = (1, the interpretation of 31 is the same
as the interpretation for r: when t increases by 1, y increases by 100 * r %. That’s not exactly correct, but
it’s a close approximation.

Here T'll simulate some data that comes from an exponential growth process, I'll visualize it, I'll visualize it
with a log transformation on y, and I'll fit a log-linear model to it.

library(tidyverse)

exponential_growth_data <- tibble(



x
y
)

1:100,
exp(.1 * x + rnorm(n = 100, sd = 1))

exponential_growth_data >
ggplot(aes(x = x, y = y)) +
geom_point () +
geom_smooth(se = FALSE)
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exponential _growth_data %>’
ggplot(aes(x = x, y = y)) +
geom_point () +
geom_smooth(se = FALSE, method = 1m) +
scale_y_logl0()
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exponential_growth_data %>/
1m(log(y) ~ x, data = .) %>
broom: :tidy ()



## # A tibble: 2 x 5

##  term estimate std.error statistic p.value
##  <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0.222 0.225 0.984 3.27e- 1
## 2 x 0.0993  0.00387 25.7 2.72e-45

Part 2: Log-log
A log-log model has logged terms both on the left and right hand sides: log(y;) = Bo + Bilog(z;) + ;.

What kind of process yields this kind of relationship? Consider a constant elasticity demand curve, where the
elasticity ¢ is the percent change in ()4 corresponding to a 1 percent change in price:

Qa = PP (2)

6) Which parameter represents the elasticity £? Fill in the blanks in the proof below:
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7) Take logs of both sides of equation (2) and change Q to y and P to x to see that we (almost)
have the log-log regression model.

8) The only missing piece is u. How would you need to introduce u into equation (2) to get it
to be additive in the log-log model, so it matches that model exactly?

(1 has the same interpretation as an elasticity: it’s the expected percent change in y corresponding to a 1
percent change in z. So if we estimate the model and get:

log(y) = .25 + .72log(x)

We'd say that a 1 percent increase in x is associated with a .72 percent increase in y. Notice for log-linear, we
multiply by 100, but for log-log, we do not.
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