
Classwork 11: Last Notes on Multiple Regression

Part 1: Exact Multicollinearity
In classwork 10, we modeled the price of houses using multiple regression. We saw that in the simple regression
context, bedrooms seems to be a very important factor for determining the price of a house, but when we
control for the other variables in the dataset, bedrooms seems to be much less important. The reason why
the estimated effect of bedrooms on price changed so much is that bedrooms was highly correlated with
many of the other explanatory variables.

What if two explanatory variables are perfectly correlated (correlation of 1 or -1)? As we’ll see in this
question, OLS will not be able to separately identify the effect of one of the variables versus the other. For
example, consider a dataset with an explanatory variable x and another explanatory variable z, which is a
linear function of x. If we try to estimate the model y = β0 + β1x + β2z + u, because x and z are perfectly
correlated, lm will not be able to decide whether to attribute explanatory power to x or z, and it will give us
NA’s:
library(tidyverse)

tibble(
x = 1:10,
z = 2 * x + 3,
y = 1 + 2 * x + 3 * z + rnorm(n = 10)
) %>%
lm(y ~ x + z, data = .) %>%
broom::tidy()

## # A tibble: 3 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 9.10 0.620 14.7 4.53e- 7
## 2 x 8.15 0.0998 81.6 5.68e-13
## 3 z NA NA NA NA

1) In workbook chapter 10, we learned that for a multiple regression with two explanatory
variables, β̂1 = (
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problem, consider the case where zi = axi + b for constants a and b.

1a) Show that zi − z̄ = a(xi − x̄).

1b) Show that
∑

i(zi − z̄)2 = a2 ∑
i(xi − x̄)2.

1c) Show that
∑
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1d) Show that
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∑

i(xi − x̄)(yi − ȳ).
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1e) Use the facts you proved in 1a-1d along with EQ1 to show that β̂1 = 0
0 when one explanatory

variable is a linear function of another explanatory variable.

Because of this, lm() considers it to be a mistake to include two variables that are perfectly correlated. It will
eliminate any variable that is a linear function of other variables, and it will return NA’s for that variable’s
estimates. In R, an NA indicates missing data.

2) Prove that if zi is a linear function of xi (that is, zi = axi + b for constants a and b), then x
and z will have an estimated correlation of 1 or -1. That is, they will be perfectly correlated
(as long as x has variation and a is nonzero).

Hint: recall that the estimate for the correlation between two random variables is ρ̂xz = σ̂xz√
σ̂2

xσ̂2
z

, and recall

that the estimate for the covariance between two random variables is: σ̂xz = 1
n−1

∑n
i=1(xi − x̄)(zi − z̄) and

recall that the estimate for the variance of a random variable is: σ̂2
x = 1

n−1
∑n

i=1(xi − x̄)2.

Part 2: F-Tests for Joint Explanatory Power
You can use something called an F test to test the joint explanatory power of a multiple regression model.
Here’s how it works:

A variable has the F distribution if it’s the ratio of some sums of squared normals, scaled by degrees of
freedom. That is, F = Q1/d1

Q2/d2 , where Q1 and Q2 are distributed chi-square (sums of squared normals).

For a regression, we have F = explained variation in y/(k−1)
unexplained variation in y/(n−k) =

∑
i
(ŷi−ȳ)2/(k−1)∑

i
(yi−ŷi)2/(n−k)

. Notice the F statistic is the
ratio of sums of squares, scaled by degrees of freedom.

The denominator degrees of freedom are just like the t test. They’re n−k where k is the number of parameters
in the model. The idea is that you start with n degrees of freedom available and you have to use one up for
each parameter (β) you estimate in your model. You can use the leftover n − k to improve your confidence in
your estimate (in the t test, the more degrees of freedom, the thinner the tails of the t-distribution).

The numerator degrees of freedom are k − 1. They have to do with the null and alternative hypotheses of the
F test for explanatory power:

H0: β1 = β2 = ... = βk−1 = 0
HA: at least one coefficient is nonzero.

The numerator of the F statistic has to do with comparing the “full” model with all k parameters to the
“null” model with only the intercept. That is, if none of the explanatory variables have an effect on y, we’re
left with the null model of yi = β0. The F test is about testing whether the additional variance explained
by the full model is significantly greater than what could be expected by random chance, so the numerator
degrees of freedom are k − 1: the extra pieces of information the full model provides compared to the null.

3) Show how the F statistic and its p-value was calculated in the example below (the last line
of the summary).

This information might be helpful:
example_lm_object <- tibble(

x = 1:5,
y = c(3, 4, 6, 6, 7)

) %>%
lm(y ~ x, data = .)

example_lm_object %>% summary()
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##
## Call:
## lm(formula = y ~ x, data = .)
##
## Residuals:
## 1 2 3 4 5
## -0.2 -0.2 0.8 -0.2 -0.2
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.2000 0.5416 4.062 0.02690 *
## x 1.0000 0.1633 6.124 0.00875 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5164 on 3 degrees of freedom
## Multiple R-squared: 0.9259, Adjusted R-squared: 0.9012
## F-statistic: 37.5 on 1 and 3 DF, p-value: 0.008754
example_lm_object %>% fitted.values()

## 1 2 3 4 5
## 3.2 4.2 5.2 6.2 7.2
# This is what the F distribution looks like with 1 numerator degree of freedom
# and and 3 denominator degrees of freedom:

ggplot() +
geom_function(fun = ~ df(., df1 = 1, df2 = 3))
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# Here are some potentially useful statistics about the F distribution:
qf(p = .95, df1 = 1, df2 = 3)

## [1] 10.12796
pf(q = 37.5, df1 = 1, df2 = 3)

## [1] 0.9912456

Note that the p-value for the F statistic is the same as the p-value for the t statistic for the hypothesis test
for β1. It should make sense that for the simple regression case, the F test of the explanatory power of the
model collapses to being the same as the t test of the significance of the only (non-intercept) parameter of
the model.
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